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Fig. 1 Characteristics of an ordinary auto-encoder

Abstract

The auto-encoder method is a type of unsupervised di-

mensionality reduction method. However, an image and its

spatially shifted version are encoded into different descrip-

tors by an ordinary auto-encoder because each descriptor

includes both a spatial pattern and its position in a window.

This will be a problem when focusing on a pattern itself. To

solve this, we proposed a transform invariant auto-encoder

based on a new cost function. By the method, we can extract

a transform invariant descriptor from an input, but we need

an additional regressor to extract transform parameters re-

quired to restore the input. In addition, the cost function

requires high computation cost by computational explosion

when considering multiple types of transforms.

In this publication, we propose a novel auto-encoder that

separates an input into a transform invariant descriptor and

transform parameters. The proposed method does not re-

quire an additional regressor and it will overcome combina-

tional explosion. The proposed method can be applied to

various auto-encoders without requiring any special mod-

ules or labeled training samples. By applying it to shift

transforms, we can achieve a spatial pattern descriptor and

its relative position in a window. By some experiments,

we demonstrate that the method can generate a pair of a

transform invariant descriptor and a set of parameters for

restoring the original input.

1. Introduction

The auto-encoder method [1], [2], [4] is a type of dimen-

sionality reduction method. It can extract essential informa-

tion from a vector via general non-linear mapping. More-

1 Ritsumeikan University
a) matsuo@i.ci.ritsumei.ac.jp

over, a mapping from a vector to a descriptor representing

essential information can be automatically generated from a

set of vectors without any supervising information.

When encoding images by the auto-encoder method, a de-

scriptor of an image generally differs from that of a spatially

shifted version of the image as shown in Fig. 1, because a

pattern itself and its position are inseparably embedded into

a descriptor. Although the denoising auto-encoder method

[6] can extract desired components from an input includ-

ing information to be ignored, it requires an ideal output

for each training sample when training an auto-encoder.

Therefore, to generate a descriptor representing a spatial

subpattern in an image by such an auto-encoder, we need to

normalize its spatial position in the images prior to training

the auto-encoder. However, such a spatial normalization is

generally difficult. For example, the normalization of the ap-

pearances of various hand–object interactions is not obvious

and requires a pattern recognition technique to automati-

cally find the standard for each image.

We have proposed a transform invariant auto-encoder that

outputs a descriptor invariant with respect to a set of trans-

forms[5]. By considering spatial shifts, the method can gen-

erate a shift invariant auto-encoder, which extracts a typical

spatial subpattern without regard to its relative position in a

window (Fig. 2). It can be applied to various auto-encoders

without requiring any special modules or labeled training

samples. By using the method, we can encode a spatial

pattern itself even if target images are difficult to label or

normalize, for example, the appearances of hand–object in-

teractions. However, it ignores a position of the pattern. To

estimate the position of the pattern, we had to introduce an

additional inference model.

In this paper, we propose a novel auto-encoder that sep-

arates an input into a transform invariant descriptor and

transform parameters. It consists of a transform invariant

encoder, the corresponding decoder and a regressor of trans-

form parameter as shown in 3. The encoder, decoder and

regressor can be trained simulteneously and an external ad-

ditional regressor is not required. The proposed method

can be applied to various auto-encoders without requiring

any special modules or labeled training samples. In addi-

tion, the proposed method will overcome combinational ex-

plosion, which occurs a problem when training a transform

invariant auto-encoder for very widely various transforms.
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Fig. 2 Characteristics of a shift invariant auto-encoder
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Fig. 3 Characteristics of a proposed auto-encoder

By applying it to shift transforms, we can achieve a spatial

pattern descriptor and its relative position in a window. By

an experiment, we demonstrate that the method can gener-

ate a pair of a transform invariant descriptor and a set of

parameters for restoring the original input.

2. Ordinary auto-encoder

In general, an auto-encoder is so trained that the encoder–

decoder combination approximately restores an input in a

certain input set. It is formulated as a problem minimizing

a cost function Cord(E,D) defined as

Cord (E,D) =
∑
I∈S
‖I −D (E (I))‖22 , (1)

where S, E(·), D(·), and ‖·‖p denote a set of inputs, the

encoder, the decoder, and the `p norm, respectively.

To minimize Cord(E,D), the decoder should be able to

approximately restore an original vector I from its descrip-

tor E(I), which has a lower dimensionality than I. By

training the encoder E and the decoder D by minimizing

Cord(E,D), information sufficient to restore an original vec-

tor can be extracted as a descriptor by the encoder. In this

way, the auto-encoder method can construct descriptors of

vectors from just a set of training vectors.

However, a descriptor of an image from an ordinary auto-

encoder includes both a spatial pattern and its position.

If images have a common spatial pattern at different po-

sitions, their descriptors are different.

3. Transform invariant auto-encoder

We have proposed the transform invariant auto-encoder

method [5]. It is trained by minimizing the following cost

function;

Cold (E,D) =
∑
I∈S

λinv

∑
i

‖D (E (I))−D (E (Tθi (I)))‖22

+ λres min
i
‖D (E (I))− Tθi (I)‖22 .

+ λspa

(‖E (I)‖1
‖E (I)‖2

)2

,

(2)

where S and Tθ denote a set of training inputs and a trans-

form operator in the ignored transforms, respectively.

By minimizing the above cost function, we can achieve

an auto-encoder that is transform invariant and can restore

a pattern accurately. However, calculation of the function

may require high computation cost for various transforms

because the function includes minimization for the trans-

form parameter θ.

4. Proposed method

We propose a new auto-encoder that separates an input

into a transform invariant descriptor and transform parame-

ters. The basic idea is relaxation of the minimization of the

restoration term (the third term in (1)) for the transform

invariant auto-encoder. To calculate the restoration term,

it is required to find the transform parameter θ giving the

minimum. However, it is generally difficult when a trans-

form parameter is continuous and high-dimensional. So, we

propose a method to avoid searching the concrete minimum

on the whole transform parameter space by using a weight

function, which indicates a transform parameter near to the

minimum. The weight function can be used as a regressor

of a transform parameter for an input. The weight function

can be optimized simultaneously with the transform invari-

ant encoder and the corresponding decoder.

4.1 Cost function

Searching the minimum can be replaced with optimization

of the weight function W (θ) as follows;

min
θ∈Θ

f(θ) = min
W (θ)≥0,

∫
Θ
W (θ)dθ=1

∫
Θ

f(θ)W (θ)dθ, (3)

where

f(θ)
def
= ‖D (E (I))− Tθ (I)‖22 . (4)

If the integral in the right side of (3) is near to the mini-

mum, the weight function W (θ) will have a value near to 1

on a small neighborhood of the minimum and almost zero

otherwise. This means that the weight function indicates

the parameter giving the minimum. Moreover, the weight

function W can be optimized by gradient method even if

it is difficult to differentiate f(θ) itself. In addition, the

weight function W (θ) may depend on each input I. There-

fore, the function W can be minimized simultaneously with

the transform invariant encoder E and the corresponding

decoder D.

By considering continuous parameters, we can rewrite the

cost function for the transform invariant auto-encoder as fol-

lowing;
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∑
I∈S

λinv

∫
Θ

‖D (E (I))−D (E (Tθ (I)))‖22 dθ

+ λres min
W

∫
Θ

‖D (E (I))− Tθ (I)‖22W (I, θ)dθ

+ λspa

(‖E (I)‖1
‖E (I)‖2

)2

,

(5)

where W is optimized under the condition that 0 ≤W (I, θ)

and
∫
ΘW (θ)dθ = 1. By optimizing W for the total value

instead for only the restoration term, we can define a new

cost function as following;

C (E,D,W )
def
=∑

I∈S
λinv

∫
Θ

‖D (E (I))−D (E (Tθ (I)))‖22 dθ

+ λres

∫
Θ

‖D (E (I))− Tθ (I)‖22W (I, θ)dθ

+ λspa

(‖E (I)‖1
‖E (I)‖2

)2

.

(6)

We train the transform invariant encoder E, the correspond-

ing decoder D and the transform parameter weight func-

tion W so that they minimize the proposed cost function

C (E,D,W ).

4.2 Calculation

For convenience of calculation, we suppose that the trans-

form parameter weight function W (I, θ) is a Gaussian func-

tion on the transform parameter space as follows;

W (I, θ) =
1

(2π)
D
2

∣∣ 1
2ΣI

∣∣ 1
2

e−
1
2
(θ−µI)T ( 1

2
ΣI)

−1
(θ−µI),

(7)

where D denotes the dimension of a transform parameter

and Σ and µ denotes the scaled covariance matrix and the

mean, respectively.

We use the Monte Carlo method to calculate integrals

in the cost function (6). First, we define a utility function

w(I, θ) as follows;

w (I, θ)
def
= e−

1
2
(θ−µI)T Σ−1

I (θ−µI),

pI (θ)
def
=

1

(2π)
D
2 |ΣI |

1
2

e−
1
2
(θ−µI)T Σ−1

I (θ−µI),
(8)

where p means a probability density function of a Gaussian

distribution. W (I, θ) can be represented as

W (I, θ) = 2
D
2 w (I, θ) pI (θ) . (9)

By using the utility functions, we can approximately calcu-

late the restoration term, the second term in (6) as follows;∫
Θ

‖D (E (I))− Tθ (I)‖22W (I, θ) dθ

=2
D
2

∫
Θ

‖D (E (I))− Tθ (I)‖22 w (I, θ) pI (θ) dθ

≈2
D
2

N

∑
θn∼ND(µI ,ΣI)

‖D (E (I))− Tθn (I)‖22 w (I, θn) ,

where ND (µI ,ΣI) denotes the D-dimensional Gaussian dis-

tribution and N denotes the number of sampled parameters

{θn}. We minimize the cost function (6) by optimizing the

parameters µI and ΣI as functions of an input I. By us-

ing the Monte Carlo method, we can avoid combinational

explosion when searching the minimum from whole possi-

ble transform parameters. Similarly, we can calculate the

invariance term, the first term in (6), by the Monte Carlo

method with the uniform distribution of possible transform

parameters.

5. Experiments

We demonstrate the effectiveness of the proposed method

by experiments with a shift invariant auto-encoder. On the

experiments, we supposed that a transform parameter θ con-

sisted of two values θx and θy and the shift operator Tθ was

defined as

(Tθ (I)) (x, y) = I(x+ θx, y + θy), (10)

where I(x, y) denotes the value of the image I at the posi-

tion (x, y). As a range of shifts, we supposed that |θx| ≤ 4

and |θy| ≤ 4.

As a transform invariant encoder, we used a neural net-

work consisting of a single CNN with 9 × 9 filter kernels

and 16-channel outputs following a max pooling with stride

2 and a three-layer fully connected neural network (NN),

where each layer has 1500, 150, 30 outputs respectively. As a

decoder corresponding to the encoder, we used a three-layer

fully connected NN, where each layer has 150, 1500, 1024

outputs, respectively. As a regressor of µI and ΣI , which

are parameters of a transform parameter weight function,

we used a four-layer fully connected NN, where each layer

has 256, 64, 16 and 5 outputs, respectively. The 2 outputs of

the final 5 outputs are used as µI and the rest 3 outputs are

used for generating ΣI . In addition, we used a hyperbolic

tangent as an activation function, which is placed between

each pair of layers.

Here, we demonstrate shift invariant property of the pro-

posed method using experiments for digit patterns.

We generated two auto-encoders. One was trained as a

shift invariant auto-encoder by minimizing (2) and the other

was trained as a proposed auto-encoder by minimizing (6)

for digit images of training images in the MNIST database

[3]. Both auto-encoders were trained by stochastic gradi-

ent descent (SGD) [3] with learning rate 1.0 × 10−3, and

both were updated with every 100 samples that were ran-

domly extracted from the training images (60k samples) in

the MNIST database. We used auto-encoders that were up-

dated 20,000 times (≈ 33 epochs). Training the shift invari-

ant auto-encoder took more than 6 and a half hours and

training the proposed auto-encoder took a little less than 6

hours. The proposed auto-encoder could be trained in less

time, even though it includes a regressor of transform pa-

rameters in addition to an encoder of transform invariant

components.

As an example, we encoded and decoded an test image of
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the digit “0”, which is not used in training auto-encoders.

Input images are shown in Fig. 4, where the center image

is the original image in the MNIST database and the oth-

ers are its shifted versions. Images in Fig. 5 are restored

from images in Fig. 4 by the shift invariant auto-encoder.

Shift invariant image components restored by the proposed

auto-encoder are shown in Fig. 6. Fig. 7 shows the restored

images which are shifted according to µI , the estimated shift

parameters.

The restored images in Fig. 5 have similar shapes on simi-

lar positions, though they are restored from inputs with dif-

ferent shifts. The images in Fig. 6 are also almost similar to

each other. This means that the proposed auto-encoder can

extract a pattern itself without regard to its position. The

images in Fig. 7 have similar shapes and positions to those

in Fig. 4. This means that the regressor in the proposed

auto-encoder successfully estimate positions of patterns.

6. Conclusion

We proposed a novel auto-encoder that separated an input

into a transform invariant descriptor and transform parame-

ters. By utilizing a transform parameter weight function and

the Monte Carlo method, we can avoid a problem of com-

binational explosion when training a proposed auto-encoder

for various transforms. By an experiment, we showed that

they can encode a pattern independently of its position and

a background, respectively.

The framework of the proposed cost function can be ap-

plied to temporal patterns and other transforms such as di-

lation and rotation. The proposed auto-encoder will be able

to independently encode typical motions in a video with-

out regard to dilation and rotation. This will be useful for

motion-based recognition.
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Fig. 4 An image in MNIST and its shifted versions

Fig. 5 Images restored by a shift invariant auto-encoder

Fig. 6 Shift invariant images restored by a proposed auto-encoder

Fig. 7 Images restored by a proposed auto-encoder
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