Inference of Grasping Pattern from Object Image Based on Interaction Descriptor

Tadashi Matsuo, Takuya Kawakami, Yoko Ogawa, Nobutaka Shimada

Ritsumeikan University

Introduction

• An object as a tool has its own function. The function is closely related to how a human grasp it [1].

Can we estimate how to grasp an object from the object itself?

It will be useful for object recognition and robot manipulation.

[1] N. Kamakura, "Shape of hand and Hand motion". Ishiyaku Publishers, 1989.

Related work

• Xiong Lv et al., "RGB-D Hand-Held Object Recognition Based on Heterogeneous Feature Fusion", Journal of Computer Science and Technology(2015)

- It estimates an object label only (not how to grasp it).
- All teacher labels must be given manually.

Proposed method

- We generate an interaction descriptor, a numeral representation of a human grasping method.
- And then we make an inference model to learn the relation between object and grasping method.

Flow of the presentation

1. Grasping image

2. Interaction descriptor

- 1. Shift invariant auto-encoder
- 2. Examples of shift invariant auto-encoder
- 3. Results of interaction descriptor

3. Inference model

- 1. Concept
- 2. Recalled interactions from an object
- 3. Interaction Map

4. Conclusion

Grasping image

Grasping method is represented as a grasping image. It consists of a depth image, hand mask and object mask. It is paired with the corresponding object image.

<u>Automatic collection of grasping images (1/2) -</u>

<u>Capture</u>

Remove unnecessary points

<u>Automatic collection of grasping images (2/2) -</u> <u>Segmentation</u>

- **1.**Segment hand and object points by using the image with isolated regions.
- **2.**Align points based on the initial **object** points.

Time series

3.Generate

grasping images

Hand

mask

Depth

Object

mask

Hand point cloud Object point cloud

Flow of the presentation

1. Grasping image

2. Interaction descriptor

- 1. Shift invariant auto-encoder
- 2. Examples of shift invariant auto-encoder
- 3. Results of interaction descriptor

3. Inference model

- 1. Concept
- 2. Recalled interactions from an object
- 3. Interaction Map

4. Conclusion

Interaction descriptor

We generate interaction descriptors by auto-encoder method;

• A low dimensional descriptor represents essence of an input.

• The auto-encoder (*E* and *D*) can be trained without teacher labels.

Desirable property of the encoder

A grasping method should correspond to an interaction descriptor.

The encoder should ignore spatial shifts. Shift invariant auto-encoder

Shift invariant auto-encoder

Shift invariant auto-encoder

Shift invariant auto-encoder

<u>Cost function for shift invariant auto-encoder (1/3)</u> Evaluation of shift invariance

Cost function for shift invariant auto-encoder (2/3) Evaluation of shape restoration

<u>Cost function for shift invariant auto-encoder (3/3)</u> <u>Total form</u>

$$C(E,D) = \lambda_{inv}C_{inv}(E,D) + \lambda_{res}C_{res}(E,D) + \lambda_{spa}C_{spa}(E)$$

Invariance term $C_{inv}(E,D)$ $\sum \sum \left\| D(E(I)) - D(E(T_{\theta}(I))) \right\|_{L^{2}}^{2}$ **Sparseness term** $C_{spa}(E)$ $\sum_{I \in S} \frac{\|E(I)\|_{L1}^2}{\|E(I)\|_{L2}^2}$ Restored image should be unchanged even if inputs are transformed with any parameter. **Restoration term** $C_{res}(E, D)$ Descriptor E(I) $\sum \left\| D(E(I)) - T_{\widehat{\theta}(I)}(I) \right\|_{L^{2}}^{2}$ should be a sparse vector. Restored image should match with one of transformed images.

Flow of the presentation

- 1. Grasping image
- 2. Interaction descriptor
 - 1. Shift invariant auto-encoder
 - 2. Examples of shift invariant auto-encoder
 - 3. Results of interaction descriptor
- 3. Inference model
 - 1. Concept
 - 2. Recalled interactions from an object
 - 3. Interaction Map
- 4. Conclusion

Example of shift invariant auto-encoder (1/2) +8 We trained auto-encoders with Shift for Y shifted MNIST training images. -8 Restored by ordinary E Dauto-encoder +8 Shift Ordinary auto-encoder for Y encodes shape and position. +8 Shift for X +8 Shift for Y -8 +8 Restored by shift EDShift for X invariant auto-encoder Input images (from MNIST database) Shift invariant auto-encoder +8 encodes shape itself. Shift for X

T. Matsuo, et al., "Transform invariant auto-encoder," IROS 2017, https://doi.org/10.1109/IROS.2017.8206047

Example of shift invariant auto-encoder (2/2) Distribution of descriptors

Distributions of descriptors from shifted test images such as 5

Input: 32×32 Descriptor dim: 30 Max shift width: 8

Flow of the presentation

- 1. Grasping image
- 2. Interaction descriptor
 - 1. Shift invariant auto-encoder
 - 2. Examples of shift invariant auto-encoder
 - 3. Examples of interaction descriptor
- 3. Inference model
 - 1. Concept
 - 2. Recalled interactions from an object
 - 3. Interaction Map
- 4. Conclusion

Structure of auto-encoder

Objects and grasping methods

Restored grasping images

Input grasping images

Images restored from interaction descriptor

Effect of shift invariant auto-encoder

Interaction descriptors represent a typical shape without position.

Distribution of interaction descriptors

1st principal component

Flow of the presentation

- 1. Grasping image
- 2. Interaction descriptor
 - 1. Shift invariant auto-encoder
 - 2. Examples of shift invariant auto-encoder
 - 3. Results of interaction descriptor

3. Inference model

- 1. Concept
- 2. Recalled interactions from an object
- 3. Interaction Map

4. Conclusion

<u>Recall from images with/without an important part</u>

<u>Recall from images with/without an important part</u>

Flow of the presentation

- 1. Grasping image
- 2. Interaction descriptor
 - 1. Shift invariant auto-encoder
 - 2. Examples of shift invariant auto-encoder
 - 3. Results of interaction descriptor
- 3. Inference model
 - 1. Concept
 - 2. Recalled interactions from an object
 - 3. Interaction Map
- 4. Conclusion

Interaction map on an object

Clusters of recalled descriptors (train)

<u>Clusters of recalled descriptors(test)</u>

Conclusion

- We proposed a method to recall grasping method from an object. It is based on:
 - Interaction descriptor by shift invariant auto-encoder We can generate numeral representation of grasping method without teacher labels.
 - Inference model by CNN

The relation between object shape and grasping method can be modeled by utilizing interaction descriptor.

- The proposed method can estimate hand region for grasping an object from the object itself.
- The proposed method will be useful for robot manipulator.

Multiple grasping types for object

To see part-specific inference, we train auto-encoder and inference model with below grasping types.

Integrated hand region mask

Integrated hand region mask indicates hand region when human grasps the object.

Integrated hand region mask

Integrated hand region mask indicate hand region when a human grasps the object.

Example for hand-object interaction

Example for hand-object interaction

48

Images restored by an ordinary auto-encoder

Images restored by a shift invariant auto-encoder