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Abstract—We propose a method of visually recalling appro-
priate grasping method from the shape of object parts. We
quantitatively express the grasping method (i.e. interaction state
of hand and object) by introducing its numerical descriptor
(interaction descriptor), and recall how to grasp by machine
learning of the relationship between partial object shapes and
interaction descriptors. Then the relationship between the inter-
action descriptors and object appearance are learned by CNN
regression. Part-based relationship between objects and grasping
hand can be modelled and recalled multiple grasping modes for
the same object if possible.

I. INTRODUCTION

An object as a tool has its own functionHuman has several
typical grasping types and switches them according to the
tool’s function [1]. In Robot Vision field, which automatically
tries to recognize kinds of objects and their functions, many
applications of deep learning methods give significantly good
performances mainly for static object shapes.

In order for the robot to properly grasp the object, it is
necessary to recognize the class of the object and recall an
appropriate hand shape corresponding to it so that its function
is successfully activated. Recently the main stream of object
recognition research has been changed toward focusing to
relationship between hand and object, namely treating object
handling scenes. Wu et al.[2] described cooking scenes by
modeling relationship between hands, cooking tools and food-
staffs with their locational positions, but they did not observe
detailed finger works. Cai et al.[3] utilized Deep neural nets
to describe relationship between hand appearances and object
textures and suceeded a task classifying a few grasping types.

However, appearance based recognition of object function
like [4] is a challenging problem because all possible appear-
ance of new objects, which are produced every day, cannot
be completely registered. In order to visually recognize the
object function, the following two characteristics are avail-
able: ”1) an object is composed of a combination of typical
graspable parts”, and 2) ”the objects with the same category
of function should have their common shape of the parts and
the corresponding grasping method”.

Therefore, we propose a method of visually recalling ap-
propriate grasping method from the shape of object parts.
We quantitatively express the grasping method (i.e. interac-
tion state of hand and object) with a numerical descriptor
(interaction descriptor), and recall how to grasp by machine
learning of the relationship between partial object shapes
and interaction descriptors. Interaction descriptor is made

by extracting features by shift invariant sparse auto-encoder
(SISAE) [5] from grasping images composed of three channels
of depth image, hand mask image, and object mask image.
Due to the sparsity nature of SISAE, it is possible to generate
a discrete grasping cluster for each object on the interaction
descriptor space. In addition, since SISAE is invariant for
parallel movement of a pattern in an input image, it can
describe grasping images with the same hand shape and
slightly different grasping positions as the same descriptor.

The collection of grasping images and object images, which
are automatically captured from the scenes where a human
grasps an object, are used as training samples for learning the
descriptor space. Then the relationship between the interaction
descriptors and object images are learned by CNN regression.
Part-based relationship between objects and grasping hand
can be modelled by training with partial image patches.
Multiple grasping modes are clustered based on the similarity
in the interaction descriptor space. Finally multiple grasping
modes for an object can be estimated by mosaicing recalled
grasping image patches with the same grapsing mode into a
whole grapsing image. The performances are shown through
experimental results.

II. OVERVIEW

Fig.1 shows the overview of the system. The proposed
system learns the relationship between an object shape and a
grasping method by observing scenes where a human grasps
it. And then, it can recall an appropriate grasping method from
a partial shape of an unknown object.

As shown in Fig.2, the system maps each grasping image
onto a interaction descriptor space generated by a SISAE,
which is trained with grasping images. The trained auto-
encoder consists of an encoder E and a decoder D. The former
encodes a colored grasping image Igrasp as a 30-dimensional
descriptor E (Igrasp). The latter restores the grasping image
as D (E (Igrasp)) from the descriptor.

Next, as shown in Fig.3, we train a inference model R
so that it can calculate a possible interaction descriptor from
an object image. The inference model R is trained with an
object image Iobj and an interaction descriptor Pteacher that
is calculated from a grasping image Igrasp of the object.
By using the trained R, we can recall a possible interaction
descriptor from an object, which is not used in the training.
Then, we can recall a grasping image of the object by decoding
the interaction descriptor as shown in Fig.4.
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Fig. 1. Overview of the proposed system

Encoder Decoder

・・・

Interaction descriptor

𝑬 𝑫

Restored grasping imageInput grasping image

𝑰𝒈𝒓𝒂𝒔𝒑 𝑫 𝑬 𝑰𝒈𝒓𝒂𝒔𝒑

Auto-encoder

Fig. 2. Interaction descriptor based on auto-encoder

Inference model: 𝑹

Known 

interaction 

descriptor 

(Teacher)

𝑰𝒈𝒓𝒂𝒔𝒑

𝑰𝒐𝒃𝒋

𝑷𝒕𝒆𝒂𝒄𝒉𝒆𝒓

𝑷𝒓𝒆𝒄𝒂𝒍𝒍 = 𝑹 𝑰𝒐𝒃𝒋

Paired for the 

same object

𝑬

Inferred 

interaction 

descriptor

Train 𝑹 to minimize 

𝑷𝒓𝒆𝒄𝒂𝒍𝒍 − 𝑷𝒕𝒆𝒂𝒄𝒉𝒆𝒓
𝟐.

Fig. 3. Training of inference model R

・
・

Unknown 

object image

Interaction 

descriptor

Recalled grasping imageInference 

model

𝑹 𝑫

Fig. 4. Recalling grasping image from an unknown object image

To focus on partial shapes related to hand-object interac-
tions, we generated grasping images as 32 × 32 pixel sub-
images extracted from an whole scene where a hand grasped
an object.

III. GRASPING IMAGE

We define a grasping image as a 3-channel image consisting
of a depth image, a hand region mask and an object region
mask because spatial relation between an object and a hand is
important to identify an interaction.

Fig.5 shows the process of collecting grasping images from
daily scenes of interactions. First, we take depth images with

a depth camera and extract a sequence of depth images from
an initial frame, which is just before touching an object, to
a frame where the object is held up by a hand. Then, we
remove points except the object and the hand by trimming
based on depth and excluding a floor plane. Here, remained
points consist of points in the object and those in the hand. To
generate an object or hand region mask, we need to distinguish
between the former and the latter. To find approximate posi-
tions of the object in each frame, we obtain the 3-dimensional
coordinate system relative to the object by matching the points
in the initial frame (which includes an object only) with
those in the following frames by the Iterative Closest Point
(ICP) algorithm. And then, we match each point in the initial
frames with the points in the following frames by the Nearest
Neighbor algorithm on the relative coordinate system. We
consider a point in the following frames matched with a point
in the initial frame as a point in the object. And we consider the
other points as a point in the hand. We generate a depth image
of an object and a hand, an object or hand region mask from
those classified points and we combined them as a 3-channel
image. And also, we obtain an object-only depth image from
the initial frame.

Now we have pairs of a 3-channel image representing an
interaction and a depth image including only an object used
in the interaction. To train the auto-encoder for generating
interaction descriptor, we extract a 32× 32 pixel image from
a 3-channel image. It is called a “grasping image” and it is
randomly extracted so that both a hand region and an object
region in it are larger than 5% of the extracted image. To train
the inference model, we extract a 32 × 32 pixel image from
an object-only depth image and it is paired with a grasping
image including the corresponding part of the object.

Fig. 5. Process of collecting grasping images from daily scenes of interactions

IV. SHIFT INVARIANT AUTO-ENCODER

We train an auto-encoder as a shift invariant auto-encoder[5]
so that an interaction descriptor represents spatial pattern
invariant to shift transforms. The shift invariant auto-encoder
is trained with a cost function utilizing an input I and its



shifted versions Ti (I) as shown in (1), where Ti means a
shift operator;

(Ti(I))(x, y) = I(x+ ∆xi, y + ∆yi). (1)

The cost function consists of 3 terms, “shift sensitivity”,
“restoration error”, and “sparseness cost”.

The shift sensitivity term is defined as

Cvar =
∑
I

∑
i

‖D(E(I))−D(E(Ti(I)))‖2L2. (2)

By optimizing the encoder E and the decoder D so that
they minimize (2), their combination is approximately shift
invariant for learned inputs. To evaluate restored patterns
without respect to shift transforms, the restoration error term
should be small if a restored input matches one of shifted
versions of its original input. It is defined as

Cres =
∑
I

min
i
‖Ti(I)−D(E(I))‖2L2. (3)

The sparseness term causes that similar inputs are encoded
into descriptors close to each other[6]. It is defined as

Csparse =
∑
I

‖E(I)‖2L1

‖E(I)‖2L2

. (4)

The total cost function is defined as a weighted sum of the
above 3 terms;

λvarCvar + λresCres + λsparseCsparse. (5)

The auto-encoder, a pair of E and D, is trained so that it
minimize the cost function (5).

Here, we demonstrate shift invariant property of the pro-
posed method using experiments for digit patterns. As an
encoder, we used a neural network consisting of a single CNN
with 9 × 9 filter kernels and 16-channel outputs and a max
pooling layer with stride 2 and a three-layer fully connected
neural network (NN), where each layer has 1500, 150, 30
outputs respectively. As a decoder, we used a three-layer fully
connected NN, where each layer has 150, 1500, 1024 outputs,
respectively. In addition, we used a hyperbolic tangent as
an activation function, which is placed between each pair
of layers. We generated two pairs of encoders and decoders
with the same structure. One was trained as an ordinary auto-
encoder, and the other was trained as a shift invariant auto-
encoder by minimizing (5) for digit images of training images
in the MNIST database [7]. The shift invariant auto-encoder
was trained with the following shift parameters:

{(∆xi,∆yi)} = {−8,−6,−4,−2, 0, 2, 4, 6, 8}2 . (6)

For the ordinary auto-encoder, we used additional images that
were randomly shifted according to the parameters in (6).
Both auto-encoders were trained by stochastic gradient descent
(SGD) [7] with learning rate 1.0×10−3, and both were updated
with every 50 samples that were randomly extracted from the
training images (60k samples) in the MNIST database. We
used auto-encoders that were updated 100,000 times (≈ 83
epochs).

(a) A digit image and its
shifted versions

(b) Images restored
by an ordinary auto-
encoder

(c) Images restored by
a shift invariant auto-
encoder

Fig. 6. Input images and restored images of a digit
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Fig. 7. Distributions of descriptors of digits

As an example, we encoded and decoded an test image
of the digit “2”, which is not used in training auto-encoders.
Input images are shown in the left of Fig. 6, where the center
image is the original image in the MNIST database and the
others are its shifted versions. Images in the center of Fig. 6
are restored from input images by an ordinary auto-encoder.
Images restored by a proposed shift invariant auto-encoder
are shown in the right of Fig. 6. The images restored by the
ordinary auto-encoder are located depending on the shifts in
the input images. Conversely, the images restored by the shift
invariant auto-encoder are very similar to each other and they
are close to a typical shape of the digit “2”.

In addition, we calculated the distributions of the descrip-
tors from the shifted images. We encoded the digit images
corresponding to “2”, “5”, and “7” and their shifted versions
using the two auto-encoders. The left figure in Fig. 7 shows
the distributions from the ordinary auto-encoder, and the right
one shows those from the shift invariant auto-encoder. In these
figures, 30 dimensional descriptors are projected onto a two-
dimensional space spanned by the three mean vectors of the
descriptors for digits “2”, “5”, and “7”. By comparing these
figures, we see that descriptors generated by the shift invariant
auto-encoder are obviously concentrated for each digit. This
means that a descriptor generated by a shift invariant auto-
encoder represents the spatial subpattern. In addition, descrip-
tors in Fig. 7 make clusters corresponding to digits, even
though we have entered no digit information when training
the shift invariant auto-encoder.

V. EXPERIMENTS OF RECALLING GRASPING METHOD

In our experiments, we use 4 categories of objects that are
a mug, a cup, a ball, and a spray can as shown in Fig. 8. Each



category includes 4 instances of objects.

Fig. 8. Objects used in the experiments

A. Structure of auto-encoder

We used an auto-encoder with the following structure to
generate numeric interaction descriptors. As an encoder, we
use a neural network consisting of a single CNN with 9 × 9
filter kernels and 16-channel outputs, a L2 pooling layer with
stride 2, and a three-layer fully connected neural network,
where each layer has 1500, 150, 30 outputs respectively. As a
decoder, we use a three-layer fully connected NN, where each
layer has 150, 1500, 3072 = 3×32×32 outputs, respectively.
In addition, we used a hyperbolic tangent as an activation
function, which is placed between each pair of layers.

B. Interaction descriptor

We prepared 4 objects for each category (Fig. 8) and we
selected one object for each category as a test sample and
used others as training samples. We collected 100 images
of interactions for each object and extracted grasping images
from them. Then, we trained an auto-encoder for generating
interaction descriptors with those training samples.

To see the information extracted by the auto-encoder, we
encoded some training samples of grasping images and then
decoded their descriptors. Fig 9 shows input images and cor-
responding restored images. These figures show that grasping
images can be approximately restored from descriptors and
fingers are restored so precisely as to be distinguished from
each other. In the case of a mug in Fig. 9, a grasping image is
restored at a position different from the input. This is because
the shift invariant auto-encoder extracts shape itself without
respect to shifts.

In Fig. 10, we show the disribution of interaction descriptors
for each object. In the figure, interaction descriptors are
projected onto two dimensional space spanned by the first
and the second principal compnants, which are calculated
from interaction descriptors of the training grasping images.
Descriptors from the same object are drawn with the same
color. The boxes with the red border mean test samples that
are not used in training. The figure shows that descriptors
of a specific object are near to each other on the descriptor
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Fig. 9. Grasping images restored by the auto-encoder
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Fig. 10. Distribution of interaction descriptors

space. Also, descriptors of an object and another object are
distributed near to each other if the objects belong to the
same category. This means that similar interactions are mapped
as descriptors near to each other and interaction descriptors
successfully reflect similarity of interactions.

C. Structure of inference model

As a inference model, we used a neural network with the
following structure, which calculates a possible interaction
descriptor from an object-only depth image. The inference
model consists of sequences of layers of a CNN layer with
16-channel 9× 9 filter kernels, a L2 pooling layer with stride
2, a subtractive normalization layer, a CNN layer with 64-
channel 5 × 5 filter kernels, a L2 pooling layer with stride
2, a subtractive normalization layer, a fully connected layer
with 1500-dimensional outputs. and a that with 30-dimensional
outputs.

As explained in the section III, we have pairs of a grasping
image and a corresponding object-only depth image. The
inference model is trained so that it outputs an interaction
descriptor of a grasping image from the corresponding object-
only depth image.
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D. Recalled grasping image

In Fig. 11, we show some grasping images decoded from
interaction descriptors inferred from object-only depth images
of training samples by the inference model. In the case of a
mug, the inferred object region mask correctly had a grip-like
part and the hand region mask was also correctly recalled. In
the case of a spray can, the inference model also successfully
recalled an interaction descriptor appropriately reflecting a
corresponding interaction. In the grasping images recalled for
a cup and a ball, the hand region masks were roughly recalled
though the object region masks had an additional small grip-
like part.

In Fig. 12, we show examples of test samples. In the case of
a mug, the inferred hand region mask had a shape for holding
the grip. In the case of a cup and a ball, the inference model
roughly recalled hand region masks for holding the objects. In
the case of a spray can, shape of fingers were approximately
recalled but the object region mask differed from the input.

The inference model infers a grasping image from a local
part of an object given as an input. So, even if input depth
images originates from the same object, inferred interaction
descriptors should differ according to the parts included in
the inputs. To confirm it, we inferred descriptors from two
depth image of a mug, where one included a handle and the
other did not include the handle. Fig. 13 shows the inferred
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Input with handle
Inferred grasping image

Input without handle

Cup

Depth Hand Object

Depth Hand Object

Depth Hand Object

Fig. 13. Recalled grasping images from images with/without handle

grasping images. From the input image with the handle, the
inference model inferred a hand shape for holding a handle.
On the other hand, from that without the handle, it inferred
a hand shape for supporting a bottom of a cup and the shape
was close to that inferred from a cup. This means that the
inference model learns importance of local characteristic parts
such as a handle automatically without special annotation.
In addition, the inference model successfully recalled an
appropriate interaction descriptor for a side part of a mug even
though such side parts of mugs were not used in training. This
means that the inference model can recall a descriptor from
an object not used in training if its local shape and interaction
with it are common to other types of objects used in training.

VI. RECALL OF MULTILPLE GRASPING METHODS FOR AN
OBJECT

The CNN-based inference model of the grasping method
introduced in the previous sections can estimate an interaction
descriptor for each small partial image patch including an
object part, then the descriptor is expanded to three-channel
image patch which consists of depth, hand region, and object
region. For each channel, the inferred image patches are
merged into a whole image by mozaicing. For hand region
channel, an image map is obtained in which each pixel value
means the probability that the pixel corresponds to hand
region. Based on the probability map the depth image of
grasping hand is cropped. The same process is done for the
object region channel.

Before the mosaicing process, the inferred image patches
are classified into a few clusters based on the similarity of
the interaction descriptor by K-mean clustering. For each
cluster, which corresponds to an identical grasping mode, the
mosaicing process is applied (see Fig. 14). Fig. 15 shows that
three clusters of descriptor are seen, two of them correspond
to apparent grasping modes (gripping the handle and grasping
the body) and the rest one has no significant grasping type.

Fig. 16 shows the obtained probability map for hand region
(left-hand images) and the regions with high probability dis-
played over the object depth images (right-hand images). The
upper images are the result corresponding to class 1, which



Fig. 14. Recall of grasping methods by merging part-based inference results

represents gripping the handle of the mag. The lower ones are
that corresponding to class 2, which represents grasping the
top of the mag. The results shows that the proposed method
can infer two typical grasping methods associated to 3-D shape
of different parts for an object.
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Fig. 15. Clusters of interaction descriptor for a mug

VII. CONCLUSION

We proposed a method of visually recalling appropriate
grasping method from the shape of object parts. We quantita-
tively express the grasping method by introducing interaction
descriptor, and recalled how to grasp by machine learning of
the relationship between partial object shapes and interaction
descriptors. The relationship between the interaction descrip-
tors and object part appearance are learned by CNN regression.
Multiple grasping modes for one object can be estimated if
the object has them. The experimental results showed that the

Probability map Recalled hand shape

Cluster 1

Cluster 2

Fig. 16. Inferred grasping methods for a mag: Right) probability map for
hand region, Left) recalled hand shape, Top) inference for cluster 1, Bottom)
that for cluster 2

proposed method can recall the appropriate grasping method
for the first-seen object if the similar partial shape and grapsing
has been learned.

Current method can use only apprearances of textures
and depth information. For more precise description and
descrimination of grasping objects, and further applications
including their functional operations by autonomous robots,
more detailed fingering activities should be modelled into
the hand-object interaction description. Since the detailed
fingering observations from images are recently available like
OpenPose toolkit[8], the extentions of the proposed method
toward utilizing such information are to be future works.
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