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1. Motivation 5. Grasping Based on the Inference
* There are many kinds of objects which we usually use. " To binarize the inferred object region Goal position of a hand
* It is very hard to develop grasping movements about all objects. mask and the inferred hand region
@ mask based on threshold values.
We propose a method that enables a robot to grasp an object based on * To calculating the center of gravity

how a human grasps it. in the maximum area.
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2. Grasping Pattern Inference
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3. Training
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" Training the model by using 2160 images which include 18 types of interactions. After 25 seconds(Lifting Up) After 29.5 seconds(End Lifting Up
4. Example of Inference /. Conclusion and Future Work

Splectmae Jnjerence mage * We proposed the method that enables a robot to grasp an object based
u on the object appearance.
" In the experiment, the robot can lift up the umbrella without dropping.

Cup(without a handle) cutter Reversed Mug * In future work, we will infer a hand shape when a human grasps an object.
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