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Abstract. This paper deals with the analysis of broadcast soccer video.
To recognize interesting events such as a goal, estimation of ball move-
ments is necessary. It is, however, sometimes difficult to detect a ball by a
simple color and shape-based method when it overlaps with players and
lines. We therefore develop a method of estimating a ball route during
such overlaps by considering spatio-temporal relationships between play-
ers, lines, and the ball. The method can deal with difficult cases such as
the one where a ball disappears at a player and re-appears from another
player. Experimental results show the effectiveness of the method.

1 Introduction

There are increasing demands for summarizing a broadcast video of a soccer
game (or other sports) to make a digest of interesting scenes such as goal scenes
so that viewers can quickly survey the game. We are now developing a system for
retrieving interesting and informative scenes based on scene understanding. To
understand various scenes in soccer games, it is essential to know the movements
of players and a ball. This paper focuses on ball tracking.

There are several ball detection methods, which use, for example, SVM [1] or
a generalized Hough transform [2]. Most of the previous methods are, however,
applicable only when a ball is sufficiently large and not so fast in the image. In our
case, a ball is usually small and sometimes moves fast. Moreover, it sometimes
overlaps with players and lines.

Several ball tracking methods deal with such problems by applying statistical
filters such as Kalman filter [3] and particle filter [4] or by using ball trajectory
models [5, 6]; these methods can handle short-term occlusions or overlaps. In
actual scenes, however, players and lines often overlap with each other and, as
a result, a ball which has been overlapped with (or occluded by) a player may
appear from another player’s region. To cope with such cases, it is necessary to
examine possible routes of the ball (i.e., a sequence of objects which overlap with
(or occlude) the ball) based on spatio-temporal relationships between players,
lines, and the ball.
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This paper proposes a method of estimating the route of a ball when it over-
laps with players and lines in broadcast soccer video. We focus on the images
taken from the center camera which spans the widest area of the field. We au-
tomatically detect shots from that camera and estimate the camera parameters
during the shots. Using the estimated parameters, all image data are transformed
into a fixed image coordinate system, where all analyses are performed.

The rest of the paper is organized as follows. Sec. 2 describes the parameter
estimation. Sec. 3 briefly explains how to track players, and how to track a ball
while it does not overlap with players and lines for a long period. Sec. 4 describes
the ball route estimation during overlaps in detail. Sec. 5 summarizes the paper
and discusses future works.

2 Camera Parameter Estimation

The position of the camera is estimated once in advance by manually matching
the lines and the frame of the goal in the image with those of a model of the field
in the scene. The other three parameters (pan, tilt, and zoom) are estimated on-
line since they usually change frame to frame. This section explains an on-line
parameter estimation, which is composed of the following three parts:

– Detection of a shot from the center camera.
– Estimation of initial camera parameters at the first frame of the shot.
– Estimation of camera parameters in subsequent frames. This part uses a

previously-developed estimation method based on a local search in the pa-
rameter space [7].

2.1 Detecting Shots from the Center Camera

We use a color histogram of 48 bins (16 bins for each color (R, G, B)) for shot
change detection. If the sum of the differences between the corresponding bins
in the current and the previous frame exceeds a threshold, the current frame is
considered to be the first frame of a new shot. This first frame is analyzed to
determine if the shot is taken by the center camera.

We use the following three conditions for this determination:

1. A large part of the image is the ground. If regions of the ground color occupy
more than 40% of the image, this condition is satisfied.

2. Sizes of players are sufficiently small. If the size of the largest region which
is in the ground region and does not have the color of lines (i.e., white) is
less than 1% of the image, this condition is satisfied. This condition is for
removing shots of zoomed-in players.

3. The number of horizontal lines is less than or equal to two and that of vertical
lines is less than or equal to one. This condition is for removing shots from
the corner cameras (used for capturing corner kick scenes).

For four images in Fig. 1, for example, the first, the second, and the third condi-
tion remove (a), (b), and (c), respectively. Note that in Fig. 1(c), there are two
vertical and three horizontal lines, while in Fig. 1(d), no such lines exist.



(a) the stands (b) zoomed-in player (c) from left camera (d) from center camera

Fig. 1. Shot examples.

2.2 Estimating Camera Parameters in a Shot

The initial values of the three camera parameters can be estimated from two
pairs of intersections of lines in the image and those of the field model. The
steps for the estimation is as follows.

1. Choose three lines in the image among the ones extracted for shot detection
such that at least one line is not in parallel with the others, and determine
the position of two intersections.

2. For each line in the image, determine a set of possible corresponding lines in
the model by considering the possible ranges of the gradients of the model
lines in the image, determined from the movable ranges of the camera pa-
rameters.

3. Generate hypotheses of line-to-line correspondence by considering all com-
binations of correspondence of the three lines. Each hypothesis is composed
of three pairs of line-to-line correspondence.

4. For each hypothesis:
(a) Calculate the positions of two intersections in the model.
(b) Calculate the camera parameter from two pairs of intersections in the

image and in the model.
(c) Project all model lines into the image using the calculated parameter,

and see how these projected lines match with the line regions (i.e., white
regions) in the image.

5. Select the best parameter which maximizes the degree of the matching be-
tween model lines and line regions.

Once the initial parameters are determined, the parameters are continuously
estimated in subsequent frames using a local search-based method [7]. Fig. 2
shows a result of the camera parameter estimation. Fig. 2(a) indicates the result
of projecting model lines onto the ground using the estimated parameters. In
Fig. 2(b), the bright area corresponds to the field of view of the camera, and red
and blue points indicate the positions of players.

3 Player and Ball Tracking

3.1 Detecting and Tracking Players

The colors of uniform in the HSV space are registered in advance. We use this
color information to extract shirts and pants regions whose sizes are within a



(a) projected lines. (b) Field of view and player positions.

Fig. 2. A result of camera parameter estimation.

certain range. The range is changed according to the estimated focal length and
the player’s position on the field. We search for pairs of the shirts and the pants
region which align almost vertically in the image.

In tracking a player, we predict the position of the player on the field by
a simple linear extrapolation from the previous two positions. We project the
predicted position onto the image by using the estimated camera parameters
and search a neighboring area of the projected position for the player.

If two players overlap, we detect the overlap and track both players as one
region until the players are separated. We determine which one is occluding by
color in the case of players of different teams and by the vertical position in the
image (i.e., the lower player occludes the upper one) in the case of players of the
same team. A snapshot of player tracking is shown in Fig. 2.

3.2 Detecting and Tracking a Ball

We use images of 480 × 240 pixels in which the ball is sometimes too small to
reliably detect from a single image. We therefore extract ball candidate regions
every frame and see if they form a continuous movement. A ball candidate region
is a white region inside the ground whose size and aspect ratio are within some
predetermined ranges. For each ball candidate region in a frame, we search its
neighbor in the next frame for candidate regions. If we find candidate regions in
three consecutive frames, we consider a ball is detected.

Once a ball is detected, we track it using a simple prediction as follows.

1. Predicted position x(t) at frame t is given by the following:

x(t) = x(t− 1) + {(x(t− 1)− x(t− 2)) + (x(t− 2)− x(t− 3))} /2
2. If a ball candidate is extracted within a neighbor of the predicted position,

it is considered to be the ball.
3. If no candidates are found, we keep tracking with calculating the predicted

positions repeatedly. If we do not find ball candidate for five consecutive
frames, we consider that the ball disappeared (occluded or overlapped).

Fig. 3 shows a successful result of ball tracking with a short overlap. The yellow
boxes indicate tracked ball, the green ones indicate the predicted positions when
a ball candidate is not extracted, and the blue ones indicate other ball candidates.



(a) 65th frame (b) 66th frame (c) 67th frame

(d) 68th frame (e) 69th frame (f) 70th frame

Fig. 3. A result of ball tracking.

(a) player (b) line (c) the stands

Fig. 4. Example cases where a simple ball detection fails.

4 Ball Route Estimation during Overlaps

We consider the following three cases where a ball cannot be detected using a
simple ball detector (see Fig. 4).

1. Overlap with players (or referees) (see Fig. 4(a)).
2. Overlap with lines (see Fig. 4(b)).
3. Overlap with the stands (see Fig. 4(c)).

As mentioned above, a difficult situation is that a ball continuously overlaps with
several players and lines. Fig. 5 shows such a situation: (a) a ball is detected near
two red players (R1 and R2); (b) the ball overlaps with a line (L13) and tracking
is suspended; (c)-(d) a red player (R1) keeps the ball; (e) he kicks the ball; (f)
the ball is detected again at the back of the white player (W1).

We examine the frames between the disappearance and the re-appearance of
a ball to estimate the ball route in the following steps.

1. Enumerate possible transitions of the ball between objects (players, lines, or
the stands) that overlap with the ball.

2. Generate ball route candidates considering spatio-temporal relationships be-
tween the objects and the ball.

3. Generate a rough ball trajectory for each ball route candidate, if possible,
by considering constraints on ball movements.



(a) 20th frame (b) 33rd frame (c) 50th frame

(d) 80th frame (e) 87th frame (f) 93rd frame

Fig. 5. An example scene where a ball has not been detected for a long period.
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Fig. 6. Division of lines and the stands.

4. Evaluate the trajectories based on the detection of ball-like regions on them,
and select the best trajectory and thus the best ball route.

4.1 Enumerate Ball Transitions

We construct a graph called a transition graph that enumerates possible transi-
tions of a ball between objects. Nodes of the graph consist of objects that may
overlap with the ball, that is, players, lines, and the stands. A ball candidate,
which is an isolated ball candidate, is also represented as a node. Links consist
of possible transitions between the nodes. Lines on the ground are divided into
straight lines and curved ones; the stands are divided into four regions. Fig. 6
shows the nodes of lines and the stands. We consider the following transitions:

1. player ←→ player, ball candidate, line.
2. ball candidate ←→ line.
3. line or the stands ←→ line or the stands

The transitions including players and ball candidates are temporal and effec-
tive only while two nodes are close enough. In Fig. 5, the circle drawn around
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Fig. 7. Part of transitions between nodes from the sequence shown in Fig. 5.

each player shows the range within which the ball can move in the next frame.
If there is another player’s centroid or a line in this circle, the ball may make
transition to one of them. Transition between lines and the stands are fixed;
transitions between adjacent nodes in Fig. 6 are possible.

Fig. 7 shows a part of transitions generated from Fig. 5. Labels of nodes,
W*, R*, L*, BC* indicate white players, red players, lines, and ball candidates,
respectively. For example, since a white player (W1) exists near a red player
(R1) during frames 90–93 (see Fig. 5(f)), transition R1→W1 for that period
is generated; also, since R1 is near a line (L5) during frames 35–93 (see Fig.
5(c)-(e)), transition R1→L5 is generated.

4.2 Generate Ball Route Candidates

We generate ball route candidates by searching the transition graph for possible
routes connecting the node where a ball disappears and the node where the ball
re-appears. In this candidate generation, we consider the temporal consistency
of transitions. That is, the earliest frame of the transition that gets into a node
should be earlier than the latest time of the transition that gets out of the node.
We also use the following rules to avoid generation of unrealistic transitions.

1. One player node can appear only once in a route. This is to avoid ball
movements in which a ball moves back and forth between the same players.

2. The maximum number of successive line nodes is two. In addition, the shape
of the two successive lines should match to a physically-possible ball move-
ment. In Fig. 5(b), for example, the transition R1→L13→L18→W2 is pos-
sible because the lines L13 and L18 can be approximated by a parabola in
the image and the ball movement can sometimes be parabolic.

3. The maximum number of successive stands nodes is two.

Fig. 8 shows some of generated ball route candidates from Fig. 7.
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Fig. 8. Some of generated ball route candidates from Fig. 7.
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Fig. 9. Separability
filter.

4.3 Generate and Evaluate Rough Ball Trajectories

Detection of ball candidates during an overlapping period is difficult. Neverthe-
less we would like to have evidence to be used to rank ball route candidates.
We therefore search for ball-like regions using separability filter [8] inside the
regions suggested by each ball route candidate. Assuming that a ball approx-
imately exhibits a linear motion in the image for a relatively short period of
time, we extract a set of ball-like regions that forms a linear segment. We then
combine such segments to construct a rough ball trajectory that matches with
one of the ball route candidates. Each route is evaluated based on the reliability
of the corresponding rough ball trajectory.

Extraction of Ball-Like Regions We search the region determined by each
ball route candidate for ball-like regions with separability filter. Separability
filter responses to cocentric circular patterns like Fig. 9 and is often used for
detecting eyes in face recognition. It outputs separability value η defined as:

η =
{

η′ (I1 ≥ I2)
−η′ (I1 < I2)

η′ =
n1(I1 − Im) + n2(I2 − Im)∑N

i=1(Ii − Im)2
,

where n1 and n2 the numbers of pixels of region 1 and region 2, respectively;
N = n1 + n2; Ii is the brightness of pixel i; I1, I2, and Im are the averaged
brightness of region 1, region 2, and the whole region, respectively.

The regions that have higher responses to the separability filter than some
threshold are extracted. Since white players’ shirts and socks regions output
high responses, we remove shirts regions using the result of player tracking. We
also remove socks regions by examining their shape; if the ratio of the longer
principal axis to the shorter one of a region is larger than some threshold, the
region is considered to be a socks region. Fig. 10(a) shows the filter output after
the removal of shirts and pants regions. Fig.10(b) shows the ball-like regions
inside a part of the search region. Since several white regions other than the ball



(a) filter output. (b) extraction result.

Fig. 10. Extraction of ball-like regions.
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Fig. 11. Clustering of ball-like regions and segment generation.

region may remain as shown in Fig. 10(b), we use the motion continuity to filter
out such regions, as described below.

Generation of Sequences of Ball-Like Regions We generate sequences of
ball-like regions (called segments). We first perform a simple clustering of the
regions; if two regions are within a certain distance in space and time, they are
put in a cluster. Clusters with less than three regions are deleted. We then fit a
line to each cluster to generate a segment. Fig. 11 shows a result of clustering
and segment generation for Route 3 in Fig. 8. Triangles are extracted ball-like
regions and their colors indicate cluster IDs; lines indicate generated segments.

The sum of the outputs of the separability filter for the regions in a segment
is called the score of the segment and is used for selecting the most probable ball
route, as described below.

Generation of Rough Ball Trajectories We generate a set of rough ball
trajectories during the overlapping period; a trajectory should pass all nodes of
the ball route candidate under consideration and include at least one segment.

In rough trajectory generation, we first enumerate all possible combinations
of segments such that no more than one segment exist at a time. We then try to
generate a trajectory for each combination. A trajectory is composed of segments
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Fig. 12. Examples of generated trajectories.

(a) Ball movement for Fig. 12(a). (b) Ball movement for Fig. 12(b).

Fig. 13. Ball movements projected onto the mosaicked image.

and straight lines added to connect the segments. The lines should satisfy the
constraint of the maximum ball speed.

Fig. 12 shows two rough ball trajectories generated from the segments shown
in Fig. 11, for Routes 2 and 3 in Fig. 8. Each trajectory is generated so that it
passes the nodes (players, lines, and ball candidates) in the corresponding routes.
Red bold lines and green ones indicate the segments (i.e., sequences of extracted
ball-like regions) and the added lines, respectively. The existence of players and
lines in space-time is also shown. Fig. 13 illustrates how the ball moves in the
mosaicked image in the case of Route 2 and 3.

Selection of Most Probable Ball Route The score of a feasible trajec-
tory is the sum of the scores of its segments normalized by the total length of



Table 1. Scores of routes in Fig. 8.

ball route candidate score sum of filter outputs trajectory length

Route 1 0.00 0 75

Route 2 22.24 3403 153

Route 3 4.00 1204 301

Route 4 4.12 1832 445

802nd frame 825th frame 829th frame

833rd frame 843rd frame 863rd frame

Fig. 14. Another result of ball route estimation.

the trajectory. For each ball route candidate, we select the trajectory among
its possible feasible trajectories which has the highest score; this score is the
score of the ball route candidate. We finally select the ball route with the high-
est score. Table 1 summarizes the scores of the four routes in Fig. 8; Route 2
(L13→L5→R1→BC1→W1) is finally selected.

4.4 Results for Other Sequences

Fig. 14 shows another sequence for which the proposed method can estimate the
ball route correctly. Pink arrows indicate the nodes which are estimated to have
the ball at each frame. The estimated route include three red players and one
white player.

We also tested the method for a long soccer video of about nine and a half
minutes. The total number of frames in the video is 17,279. The method auto-
matically detected five shots taken by the center camera; the number of frames
for the shots is 2,289 in total. In the shots, there are 34 sequences during which
a ball is not detected by a simple method and to which the proposed method is
thus applied. Their average number of frames is about 20. We examined the out-
puts of the method for these sequences and found the estimated route is correct
for 28 sequences. Failures in ball route estimation are mostly caused by those in
detecting ball-like regions, especially when a ball goes out of the field into the



stands immediately after a player kicks or heads it. Detection of ball-like regions
needs to be improved to cope with such cases.

5 Conclusions and Discussion

This paper has presented a method of estimating a ball route in soccer broadcast
video when a ball continuously overlaps with players and lines. We first generate a
transition graph representing possible transitions of the ball between overlapping
objects, based on their spatio-temporal relationships. We then enumerate ball
route candidates from the graph and select the best one by searching for the
evidence for ball existence near each route candidate. By this two-stage approach,
we can greatly reduce the region to examine in the image. We have also described
a method of on-line estimating the camera parameters. The method exhibits a
good performance for a set of difficult scenes.

The current method estimates a ball route in the image; when a ball passes a
player, for example, the method does not tell whether or not the ball is actually
touched by the player. To make such a judgment, we need additional inference
about the actual trajectory of the ball and the positions of the players on the
ground. This is a future work. Another future work is to apply the method,
with necessary improvements, to the shots other than the ones from the center
camera. This is necessary for developing a scene retrieval and summarization
system.
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